

# Activity-selection Problem

Kuan-Yu Chen (陳冠宇)

2019/06/11 @ TR-310-1, NTUST

# Review

---

- Dijkstra's algorithm maintains a set  $S$  of vertices whose final shortest-path weights from the source  $s$  have already been determined
  - $w(u, v) \geq 0$  for each edge  $(u, v)$ 
    - Selects the vertex  $u \in V - S$  with the minimum shortest path estimate
    - Adds  $u$  to  $S$
    - Relaxes all edges leaving  $u$
- The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source
  - If there is such a cycle, returns false
  - If there is no such cycle, the algorithm produces the shortest paths and their weights

# Introduction

---

- For many optimization problems, using dynamic programming to determine the best choices is overkill
  - More efficient algorithms will do
- A *greedy algorithm* always makes the choice that looks best at the moment
  - It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
  - **Greedy algorithms do not always yield optimal solutions**, but for many problems they do

# Activity-selection Problem

- Suppose we have a set  $S = \{a_1, a_2, \dots, a_n\}$  of  $n$  proposed **activities** that wish to use a resource
  - Each activity  $a_i$  has a **start time**  $s_i$  and a **finish time**  $f_i$
  - Activities  $a_i$  and  $a_j$  are **compatible** if their execution times do not overlap
  - In the **activity-selection problem**, we wish to select a maximum-size subset of mutually compatible activities
  - For example

| $i$   | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 | 11 |
|-------|---|---|---|---|---|---|----|----|----|----|----|
| $s_i$ | 1 | 3 | 0 | 5 | 3 | 5 | 6  | 8  | 8  | 2  | 12 |
| $f_i$ | 4 | 5 | 6 | 7 | 9 | 9 | 10 | 11 | 12 | 14 | 16 |

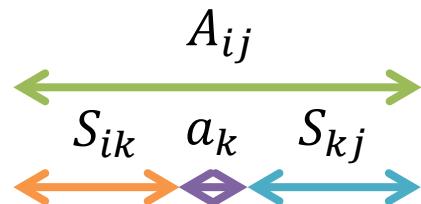
- The subset  $\{a_3, a_9, a_{11}\}$  consists of mutually compatible activities
- However,  $\{a_1, a_4, a_8, a_{11}\}$  and  $\{a_2, a_4, a_9, a_{11}\}$  are both largest subsets of mutually compatible activities

# DP for Activity-selection Problem.

- Let us denote by  $S_{ij}$  the set of activities that start after activity  $a_i$  finishes and that finish before activity  $a_j$  starts
  - Suppose  $A_{ij}$  is a maximum set of mutually compatible activities in  $S_{ij}$



- If  $A_{ij}$  includes activity  $a_k$ , the goal is left with two subproblems:
  - finding mutually compatible activities in the set  $S_{ik}$
  - finding mutually compatible activities in the set  $S_{kj}$

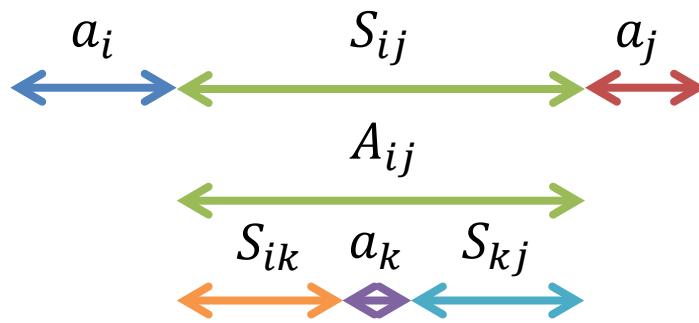


# DP for Activity-selection Problem..

- This way of characterizing optimal substructure suggests that we might solve the activity-selection problem by DP
  - If we denote the size of an optimal solution for the set  $S_{ij}$  by  $c[i, j]$ , then we would have the recurrence

$$c[i, j] = c[i, k] + 1 + c[k, j]$$

$$c[i, j] = \begin{cases} 0, & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i, k] + 1 + c[k, j]\}, & \text{if } S_{ij} \neq \emptyset \end{cases}$$



# Greedy Search Strategy

---

- What do we mean by the greedy choice for the activity-selection problem?
  - Intuition suggests that we should **choose an activity that leaves the resource available for as many other activities as possible**
    - Of the activities we end up choosing, one of them must be the first one to finish
    - In other words, our intuition tells us to choose the activity in  $S$  with **the earliest finish time**, since that would leave the resource available for as many of the activities that follow it as possible
  - If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after  $a_1$  finishes
    - We assume that the activities are sorted in monotonically increasing order of finish time

# Prove the Intuition

$$A_k = \{a_j, \dots\}$$
$$A'_k = \{a_m, \dots\}$$

- Let  $S_k = \{a_i \in S : s_i \geq f_k\}$  be the set of activities that start after activity  $a_k$  finishes. Consider any nonempty subproblem  $S_k$ , and let  $a_m$  be an activity in  $S_k$  with the earliest finish time. Then  $a_m$  is included in some maximum-size subset of mutually compatible activities of  $S_k$ 
  - Let  $A_k$  be a maximum-size subset of mutually compatible activities in  $S_k$
  - Let  $a_j$  be the activity in  $A_k$  with the earliest finish time
    - Remember that  $a_m$  be an activity in  $S_k$  with the earliest finish time
  - If  $a_j = a_m$ , we are done
  - If  $a_j \neq a_m$ , let  $A'_k = A_k - \{a_j\} \cup \{a_m\}$ 
    - $A'_k$  is valid, because activities in  $A_k$  are disjoint,  $a_j$  is the first activity to finish in  $A_k$ , and  $f_m \leq f_j$
    - Thus,  $|A'_k| = |A_k|$ , we conclude that  $A'_k$  is a maximum-size subset of mutually compatible activities of  $S_k$ , and it includes  $a_m$

# Questions?

---



[kychen@mail.ntust.edu.tw](mailto:kychen@mail.ntust.edu.tw)